Two Blocks on a Ramp with a Massive Pulley (Friction & Rotation)

December 29, 2025

Problem

explain and visualise this

Explanation

We have a classic coupled system:

  • Block 1: mass m1=2.45kgm_1 = 2.45\,\text{kg} on a rough ramp at θ=30\theta = 30^\circ.
  • Block 2: mass m2=5.80kgm_2 = 5.80\,\text{kg} hanging vertically.
  • Pulley: solid disk, radius R=0.25mR = 0.25\,\text{m}, mass M=10.0kgM = 10.0\,\text{kg}.
  • Coefficient of kinetic friction: μk=0.360\mu_k = 0.360 for both surfaces.
  • String is massless but the pulley has rotational inertia, so tensions differ on each side.

We want:

  1. The magnitude of the common acceleration aa of the blocks.
  2. The tension on the left side of the pulley (ramp side), T1T_1.
  3. The tension on the right side of the pulley (hanging side), T2T_2.

1. Force analysis and directions

We assume (and later confirm) that:

  • Block m2m_2 moves downward.
  • Block m1m_1 moves up the ramp.

Choose positive directions:

  • For m1m_1: along the ramp, up the incline.
  • For m2m_2: downward.
  • For rotation of the pulley: direction corresponding to m2m_2 going down is positive (so side with T2T_2 tends to rotate it).

Forces on m1m_1 (on the ramp)

Along the incline:

  • Tension T1T_1 up the ramp.
  • Gravity component m1gsinθm_1 g \sin\theta down the ramp.
  • Kinetic friction fk1f_{k1} down the ramp (because motion is up the ramp).

Normal force: N1=m1gcosθN_1 = m_1 g \cos\theta.

Friction:

fk1=μkN1=μkm1gcosθ f_{k1} = \mu_k N_1 = \mu_k m_1 g \cos\theta

Newton's 2nd law along the ramp (positive up-slope):

T1m1gsinθfk1=m1aT_1 - m_1 g \sin\theta - f_{k1} = m_1 a

Substitute fk1f_{k1}:

T1m1gsinθμkm1gcosθ=m1a(1)T_1 - m_1 g \sin\theta - \mu_k m_1 g \cos\theta = m_1 a \tag{1}

Forces on m2m_2 (hanging)

Take downward as positive:

  • Gravity m2gm_2 g (downward, +)
  • Tension T2T_2 upward (negative).

Newton's 2nd law:

m2gT2=m2a(2) m_2 g - T_2 = m_2 a \tag{2}

Rotation of the pulley

A solid disk has moment of inertia

I=12MR2 I = \frac{1}{2} M R^2

Torques about the center (positive in direction of T2T_2 creating the motion):

  • Torque from T2T_2: +T2R+T_2 R.
  • Torque from T1T_1: T1R-T_1 R.

Net torque:

(T2T1)R=Iα(T_2 - T_1) R = I \alpha

No slipping of the string, so

a=αR    α=aR a = \alpha R \implies \alpha = \frac{a}{R}

Thus

(T2T1)R=IaR(T_2 - T_1) R = I \frac{a}{R} T2T1=IR2a=12MR2R2a=12Ma(3)T_2 - T_1 = \frac{I}{R^2} a = \frac{\tfrac{1}{2} M R^2}{R^2} a = \frac{1}{2} M a \tag{3}

Now we have 3 unknowns a,T1,T2a, T_1, T_2 and 3 equations (1), (2), (3).


2. Solve symbolically

From (2):

T2=m2gm2a(2’)T_2 = m_2 g - m_2 a \tag{2'}

From (1):

T1=m1a+m1gsinθ+μkm1gcosθ(1’)T_1 = m_1 a + m_1 g \sin\theta + \mu_k m_1 g \cos\theta \tag{1'}

Plug (1') and (2') into (3):

(m2gm2a)(m1a+m1gsinθ+μkm1gcosθ)=12Ma(m_2 g - m_2 a) - (m_1 a + m_1 g \sin\theta + \mu_k m_1 g \cos\theta) = \frac{1}{2} M a

Group terms in aa and constant terms:

m2gm1gsinθμkm1gcosθm2am1a=12Ma m_2 g - m_1 g \sin\theta - \mu_k m_1 g \cos\theta - m_2 a - m_1 a = \frac{1}{2} M a

Move all aa terms to one side:

m2gm1gsinθμkm1gcosθ=m2a+m1a+12Ma m_2 g - m_1 g \sin\theta - \mu_k m_1 g \cos\theta = m_2 a + m_1 a + \frac{1}{2} M a

Factor aa on the right:

m2gm1gsinθμkm1gcosθ=(m1+m2+12M)a m_2 g - m_1 g \sin\theta - \mu_k m_1 g \cos\theta = \left(m_1 + m_2 + \tfrac{1}{2} M \right) a

So

a=m2gm1gsinθμkm1gcosθm1+m2+12M(4) a = \dfrac{m_2 g - m_1 g \sin\theta - \mu_k m_1 g \cos\theta}{m_1 + m_2 + \tfrac{1}{2} M} \tag{4}

Then use (1') and (2') to get T1,T2T_1, T_2.


3. Numerical evaluation

Use:

  • m1=2.45kgm_1 = 2.45\,\text{kg}
  • m2=5.80kgm_2 = 5.80\,\text{kg}
  • M=10.0kgM = 10.0\,\text{kg}
  • θ=30\theta = 30^\circ: sin30=0.5\sin 30^\circ = 0.5, cos30=3/20.866\cos 30^\circ = \sqrt{3}/2 \approx 0.866
  • μk=0.360\mu_k = 0.360
  • g9.80m/s2g \approx 9.80\,\text{m/s}^2 (you can also use 9.81; the result changes slightly)

Compute the denominator

m1+m2+12M=2.45+5.80+0.510.0=2.45+5.80+5.00=13.25kg m_1 + m_2 + \tfrac{1}{2} M = 2.45 + 5.80 + 0.5 \cdot 10.0 = 2.45 + 5.80 + 5.00 = 13.25\,\text{kg}

Compute the numerator

First, compute each term:

  1. m2g5.809.8056.84Nm_2 g \approx 5.80 \cdot 9.80 \approx 56.84\,\text{N}
  2. m1gsinθ2.459.800.52.454.912.0Nm_1 g \sin\theta \approx 2.45 \cdot 9.80 \cdot 0.5 \approx 2.45 \cdot 4.9 \approx 12.0\,\text{N}
  3. μkm1gcosθ0.3602.459.800.866\mu_k m_1 g \cos\theta \approx 0.360 \cdot 2.45 \cdot 9.80 \cdot 0.866.
    • 2.459.8024.012.45 \cdot 9.80 \approx 24.01
    • 24.010.86620.824.01 \cdot 0.866 \approx 20.8
    • 0.36020.87.5N0.360 \cdot 20.8 \approx 7.5\,\text{N} (approx).

So the numerator is

m2gm1gsinθμkm1gcosθ56.8412.07.537.3N m_2 g - m_1 g \sin\theta - \mu_k m_1 g \cos\theta \approx 56.84 - 12.0 - 7.5 \approx 37.3\,\text{N}

Acceleration

a37.313.252.8m/s2 a \approx \frac{37.3}{13.25} \approx 2.8\,\text{m/s}^2

So the magnitude of the acceleration is about

a2.82m/s2a \approx 2.82\,\text{m/s}^2 (depending on rounding).

Direction:

  • m2m_2 moves downward.
  • m1m_1 moves up the ramp.

Tensions

Using a2.82m/s2a \approx 2.82\,\text{m/s}^2.

  1. From (2'):

    T2=m2gm2a5.80(9.802.82)5.806.9840.5NT_2 = m_2 g - m_2 a \approx 5.80(9.80 - 2.82) \approx 5.80 \cdot 6.98 \approx 40.5\,\text{N}

    So T24041NT_2 \approx 40\text{–}41\,\text{N}.

  2. From (1'):

    T1=m1a+m1gsinθ+μkm1gcosθT_1 = m_1 a + m_1 g \sin\theta + \mu_k m_1 g \cos\theta
    • m1a2.452.826.9Nm_1 a \approx 2.45 \cdot 2.82 \approx 6.9\,\text{N}
    • m1gsinθ12.0Nm_1 g \sin\theta \approx 12.0\,\text{N} (from above)
    • μkm1gcosθ7.5N\mu_k m_1 g \cos\theta \approx 7.5\,\text{N} (from above)

    Then

    T16.9+12.0+7.526.4NT_1 \approx 6.9 + 12.0 + 7.5 \approx 26.4\,\text{N}

So numerically (rounded):

  • Acceleration: a2.8m/s2a \approx 2.8\,\text{m/s}^2 (magnitude)
  • Tension (left / ramp side): T126NT_1 \approx 26\,\text{N}
  • Tension (right / hanging side): T241NT_2 \approx 41\,\text{N}

The difference T2T1T_2 - T_1 is what produces the angular acceleration of the massive pulley.


4. What the visualization shows

Use the controls to:

  • Change m1,m2,M,μk,θm_1, m_2, M, \mu_k, \theta.
  • See blocks move in real time.
  • Watch friction and gravity components on m1m_1 along the ramp.
  • Watch both tensions and the net torque on the pulley.

Conceptually:

  • Increasing m2m_2 makes the system accelerate more.
  • Increasing m1m_1, μk\mu_k, or θ\theta (to increase m1gsinθm_1 g\sin\theta) can slow or even reverse the motion.
  • Increasing MM (the pulley's inertia) does not change the net driving force, but it makes more mass "participate" in acceleration, so aa becomes smaller for the same forces.

You can also use the "Show Field Lines" toggle to overlay a simplified diagram of force components along the ramp for m1m_1, helping connect the algebra to the geometry of the situation.

Interactive Visualization

Parameters

2.45
5.80
10.00
30.00
0.36
9.80
1.00
0.00
Two Blocks on a Ramp with a Massive Pulley (Friction & Rotation)